Aerodynamic optimisation of a morphing leading edge airfoil

Andrea Magrini* and Ernesto Benini

Department of Industrial Engineering, Università Degli Studi di Padova *andrea.magrini@phd.unipd.it

1. What is morphing?

- Morphing indicates the ability of manipulating certain characteristics of a vehicle to better match the vehicle's state to the environment and increase its performance
- Aircraft are usually designed for optimal performance at a fixed operating point, that can represent only a small portion of the flight envelope, penalizing the overall efficiency
- A morphing leading edge is a compliant structure deformed by an internal actuator device, without gaps in the surface responsible for drag and noise generation

minimi

such th

with bo Re =

2. Aim of the study

- Identify an optimization strategy for morphing leading edge airfoil in terms of:
 - Shape parameterization
 - Constraints on deformability
 - Optimization algorithm
 - Aerodynamic model
- Provide an estimate of possible improvements of aerodynamic performance using a morphing leading edge

3. Shape parameterization

- A dedicated procedure for Constant Arc Length (CAL) parameterization applied to CST technique is developed
- Each profile is morphed by keeping the same arc length $L_m = L_0$
- Constraint on length variation limits axial strain and enhance actual feasibility
- Morphing involves only 25% of chord

6. Multi-point optimisation

8. References

[1] Andrea Magrini and Ernesto Benini. Aerodynamic optimization of a morphing leading edge airfoil with a constant arc length parameterization. Journal of Aerospace Engineering, 31(2):04017093, 2018

4. Aerodynamic model validation

- Steady RANS CFD solver (Ansys Fluent) for aerodynamic performance calculation
- Grid sensitivity and turbulence model influence widely analysed
- Two RANS models selected for optimisation (Spallart-Allmaras and $\gamma - Re_{\theta}$) + a potential flow solver (XFOIL)

[%]

5. 2D Optimization for drag minimisation

	α () α					
ze	$C_d(\mathbf{x}), \mathbf{x} \in \Omega$	Index		B/L	Opt.	Rel.Var
nat:	$ L_m - L_0 / L_0 \le 1e - 6$		XF	0.0312	0.0253	-23.4
	$ A_m - A_0 / A_0 \le 0.05$	Cd	SA	0.0400	0.0364	-8.98
	$C_{l,h} - C_l \le 0$		$\gamma-\theta$	0.0342	0.0281	-17.9
	$(C_{m,b} - C_m)/C_{m,b} \le 0.1$	CI	XF	1.942	2.058	6.00
			SA	1.889	1.895	0.51
	$\boldsymbol{\Omega} = \mathbf{x} \in \mathbb{R}^5 \mathbf{L} \mathbf{b} \leq \mathbf{x} \leq \mathbf{U} \mathbf{b}$		$\gamma-\theta$	1.890	2.023	7.35
undary conditions:		L/D	XF	62.19	81.34	30.7
			SA	47.11	52.03	10.43
$= 6E06, M = 0.20, \alpha = 15^{\circ}$			$\gamma - \theta$	55.28	71.09	30.85

Metamodel-assisted hybrid optimization loop

• Hybrid algorithm: genetic alorithm (GA) for global search, gradient-based (GB) for local refinement around each individual using surrogate model (SM)

- Artificial neural network (ANN) for fitness estimation, trained on data from previous generations
- 2D optimisation repeated with hybrid model achieving a solution close to the original one
- Computational time reduced by 12%, number of CFD calls reduced by 19%

DEGLI STUDI **DI PADOVA**